Probabilistic Performance Assessment Modeling at the West Valley Site

Quarterly Public Meeting May 2019

NC OMPANY

Neptune and Company, Inc • May 2019

What is Performance Assessment?

Performance Assessment is an analysis of the release of a radionuclides (and other contaminants) from a contaminated site, and an estimation of the exposure to future humans and other biota to these contaminants, for a specific set of future site scenarios that are based on expected future land use.

PAs are generally intended to evaluate whether or not performance objectives are met.

Modeling the System

Example: Human and ecological health effects arise from exposure to contaminants transported through an engineered (near field) and natural (far field) environment to a biological (physiological) environment

Near field: Radiological materials leak out of buried wastes. Far field: Contaminants migrate through the environment.

a radioactive waste disposal facility in Tennessee USA

Physiological exposure: Humans and ecological receptors are exposed by several pathways.

Neptune and Company, Inc • May 2019

Why Performance Assessment?

- Federal agencies (EPA, NRC, and DOE) all require site-specific performance assessments (PAs) at radiologicallycontaminated sites.
- NRC's Final Policy Statement identified its License Termination Rule as the decommissioning criteria for the WVDP.
- A PA is supported by a science model that emulates the release, transport, and future exposure to contaminants.
- Deterministic and Probabilistic

Deterministic Modeling

Deterministic models...

- Utilize a single set of input parameters (inventory, hydraulic conductivity, K_d, etc.)
- Produce single-valued output with no uncertainty
- Are easy to compare to deterministic performance objectives

A single run (deterministic) simulation will generate a single time history of dose.

6

Probabilistic Modeling

Probabilistic models

- Utilize a range of input parameters (inventory, hydraulic conductivity, K_d, etc.).
- Designed to account for *inherent* uncertainties in assumptions, parameter values, and in the models themselves.
- Model is run many times with different randomly selected values for inputs.
- Model outputs are collections of values (distributions) for endpoints of interest.

A probabilistic simulation will generate several time histories of dose, showing uncertainty.

8

A probabilistic simulation can also be shown using a statistical summary.

9

Deterministic Modeling

- We often say "It's ok to make conservative decisions. It's not ok to try to build conservative models".
- Conservativism is subjective and it obscures model interpretation.
- Another fundamental issue with the philosophy of deterministic models is they assume the model structure is correct.

Probabilistic Modeling

Probabilistic models

- Strive to be realistic (not conservative)
- Represent uncertainty using many values for model parameters
- Allow for identification of input parameters that are most important
- Allows for iterative model development and identification of data gaps

- Does not represent uncertainty
- Limited results for decision making

- Reflects uncertainty clearly
- Decision maker has to evaluate comfort level

Deterministic vs **Probabilistic**

pro

con

deterministic analysis	 May be appropriate for simple compliance demonstration If so, then simple for decision makers and public 	 Uncertainties are unspecified What is "conservative" may not be known No global SA possible
probabilistic analysis	 Better represents state of knowledge 	 Requires more computer time (perhaps)
	 Requires development of input distributions 	
	 Facilitates global SA and uncertainty analysis 	

Managing Uncertainty

- We know that our knowledge is incomplete.
- How can we account for imperfect knowledge?
- Each modeling parameter and process has inherent uncertainty and variability.
 - Inputs are based on what we think we know (expectation) and how unsure we are (uncertainty).
 - Therefore the results must also be uncertain.

time

Probabilistic Modeling

- Model preparation
 - Gather pertinent information
 - Develop conceptual model
- Model structure
 - Variables (parameters) and relationships
 - Include alternative models, scenarios
- Model specification
 - Probability distributions, correlations
 - Costs, value judgments

A PA Influence Diagram

System Modeling

time

Neptune and Company, Inc • May 2019

Long-term Probabilistic PA Summary

- Alternatives focused
- Probabilistic system allows full global Sensitivity Analysis to be performed.
 - Identifies inputs that are the primary drivers for the results
 - Can perform SA over the decision options
- Technically defensible, transparent, open, traceable

Support for the SEIS

- Modeling results will be available for the SEIS – the cross-over should be straightforward in principle.
- The SEIS process may require modifications and additions to the West Valley PPA Model in order to accommodate several alternatives.

